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Data from automated vehicle location (AVL) systems, automatic pas-
senger counter (APC) systems, and fare box payments have been heav-
ily used to generate dwell time models with the goal of recommending 
improvements in efficiency and reliability of bus transit systems. How-
ever, automatic data collection methods may result in a loss of detail with 
regard to the dynamics of passenger activity, which may bias the esti-
mates associated with dwell or passenger activity time. The purpose of 
this study is to understand better any biases that might exist from using  
data from AVL–APC systems or fare box payments when estimating 
dwell time. Manually collected data from Montreal, Quebec, Canada, 
are used to estimate detailed dwell time models. This study compared 
those estimates to models generated by using data similar to what was 
reported by AVL–APC systems and fare boxes. The results reveal an 
overestimation in the passenger activity component of dwell time, which 
is mainly attributed to excess dwell time that AVL–APC data and fare 
box payments generally do not capture. While AVL–APC and fare box 
technologies provide transit agencies with rich data for analysis, adjust-
ments to such data collection methods are warranted to reduce the over-
estimation of dwell time and to provide a more accurate picture of what 
is happening on the ground to generate better interventions that can 
reduce dwell times.

Data from automated vehicle location (AVL) systems, automatic pas-
senger counter (APC) systems, and fare box payments have been used 
heavily in past years to generate dwell time models, with the goal of 
recommending or evaluating improvements in efficiency and reliabil-
ity of bus transit systems, or both. These strategies can include—but 
are not limited to—all-door boarding strategies, smart card policy, 
off-board fare collection, low-floor vehicles, and use of articulated 
vehicles. These particular strategies are used to reduce the dwell time 
needed for passenger activity because dwell time can consume up to 
25% of total running time (1). Therefore, the determinants of dwell 
time and time associated with its major components—including the 
time required to open and close doors, passenger activity time, and 
additional time until door closings—have been extensively studied by 
using data collected either manually or automatically (2–4).

Before AVL–APC systems, the collection of data for bus dwell 
time analyses was done manually through labor-intensive methods 
(1, 5, 6). Such methods, however, allow for direct observations of 

passenger activity per door, fare payment method, and unproductive 
door opening time (4). By the early 2000s, researchers began to study 
the application of AVL–APC data (4, 7, 8), which provided a large 
number of observations to aid in the development of statistical models 
with greater explanatory power. Automatic data collection methods 
result in a loss of some detail regarding the dynamics of passenger 
activity; such methods, however, provide a larger data set for analysis 
at a lower cost. This trade-off can be minimized through introduc-
ing improvements in automatic data collection methods and through 
identification of biases that are imposed from use of this method 
when compared to manual counts with detailed observations.

The purpose of this study is to estimate how accurately AVL–APC 
and fare box data are capturing the time associated with passenger 
activity. To achieve this goal, the authors used manually collected 
stop-level observation data from two bus routes operated by the 
Société de transport de Montreal (STM), the public transit service 
provider on the island of Montreal, Quebec, Canada. The study com-
pared estimates of detailed dwell time by relying on manual count 
observations to estimates generated from models using data similar 
to what is reported by AVL–APC systems and fare boxes.

This paper starts with a review of previous research, followed by 
a methodology and data collection section, which includes a descrip-
tion of the data used in the analysis. A results section includes the 
different statistical models, followed by a discussion section. Finally, 
the paper ends with a conclusion and recommendations section.

Literature Review

Intelligent transport systems (ITS) provide transport agencies with 
essential information and communication technologies to make 
informed decisions (9). In the public transit sector, AVL and APC 
systems are major components of ITS technologies that many agen-
cies around the world are using or are in the process of implementing 
because of their wide range of benefits to agencies and customers. 
For example the application of AVL technology has been dominated 
by real-time applications such as computer-aided dispatching, next-
stop announcements, and next-arrival displays (10). Also, archived 
data collected through AVL and APC systems provide transit agen-
cies with a rich and extensive database that can be analyzed in 
transit research for planning and operational improvements (4, 11). 
Operational improvements—namely, reductions in travel time and 
improvements in reliability—increase the operational efficiency for 
a transit provider (12), while such improvements may also result in 
the growth of patronage (13, 14) and increase riders’ satisfaction (15).

Dwell time is defined as the time required for a transit vehicle 
to stop for the purpose of allowing passengers to board and alight 
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(16). The main component of dwell time is passenger activity at each 
stop (17); however, the Highway Capacity Manual in 1997 indicated 
that the average time for passenger activity depends on many factors, 
such as the height of the bus or number of steps, the fare collection 
system of the bus, and time associated with lift operation (18). In 
the past, manually collected data were used to estimate dwell times  
(1, 19–21). These studies focused on estimating the time associated 
with passenger activity. One of the first studies that analyzed transit 
travel time performance and dwell time variation was published in 
1983 by Levinson (1). In this landmark study, estimates of bus dwell  
times revealed that each passenger boarding added 2.75 s to the con-
stant dwell time of 5 s (includes door opening and closing times). 
Similarly, Guenthner and Sinha estimated that each passenger board-
ing or alighting added 3 to 5 s to the dwell time (19). Accounting 
for fare payment type, Zografos and Levinson estimated that a pas-
senger boarding time took only 2 s on an uncrowded bus with an 
off-board fare payment system in Connecticut (22). Early examples 
of dwell time models, such as the examples presented above, were 
based on smaller sample sizes because of the labor-intensive data 
collection methods required, and resulted in lower explanatory 
power (4).

By the late 1990s, technological advancements allowed for 
on-board implementation and data collection from AVL–APC sys-
tems, which allowed researchers the ability to study the application 
of data collected by AVL–APC systems for analyses on service 
reliability and enhanced route planning. Strathman et al. presented 
a baseline analysis of data collected by Tri-Met, the transit provider 
in Portland, Oregon, to assess service reliability on selected routes 
(7). Bertini and El-Geneidy focused on the dwell time of a single 
route in Portland, Oregon, and found significant model improve-
ments from early studies that measured the number of passengers 
boarding and alighting together (8). The authors estimated that each 
passenger boarding adds approximately 3.6 s, while each passenger 
alighting adds only 0.85 s to the dwell time, and approximately 5.8 s 
is attributable to time required for door opening or closing. In a 
similar study of AVL–APC data collected by Tri-Met, Dueker et al. 
found that each passenger boarding adds 3.5 s and each passenger 
alighting adds 1.7 s to the constant dwell time of 5.1 s (4).

More recently, Diab and El-Geneidy evaluated the impact of bus 
stop location on dwell time and found longer dwell times associated 
with bus stops located on the nearside of an intersection (23). Further-
more, the authors estimated that passenger boarding added 3.3 s and 
each passenger alighting added 1.9 s to the total dwell time. Evaluat-
ing the dwell time-savings of operating articulated buses, El-Geneidy 
and Vijayakumar found an average passenger boarding time of 4.1 s 
and alighting time of 2.7 s; however, time savings are found at the 
second and third doors where passengers are not required to scan their 
fare cards (3). From these select studies using AVL–APC data, it can 
be seen that on average, the first passenger boarding takes between 
3.3 and 4.1 s. However, as shown in Levinson’s 1983 estimate of 
dwell times using manually collected data, each passenger boarding 
added approximately 2.75 s (1). Such higher estimates of passenger 
boarding time may be attributed to the method by which AVL–APC 
data record dwell time. Dwell time is recorded by an AVL–APC sys-
tem as the total time that the door is open; therefore, additional time 
when the door remains open after passenger activity may result in an 
overestimate of the impacts of passenger activity on dwell time. Thus, 
while AVL–APC technology provides transit agencies with rich data 
for analysis and operational improvements, manual data collection 
methods remain vital for verification of AVL–APC data to understand 
better the reasons for a discrepancy in the estimates.

Last, literature has explored the passenger boarding time associ-
ated with various fare payment methods. Improvements to both the 
method and location of fare payment can result in significant time-
savings in dwell times (24). Research has found different boarding 
times associated with different methods of fare payment (25, 26). 
In some cases, because of the absence of AVL–APC data, automati-
cally collected fare box data are used to estimate passenger activity 
time (6). While some studies relied on manual counts to understand 
impacts of fare collection methods on dwell time due to limita-
tions in automated data collection systems (27). Despite significant 
advances in knowledge of determinants of dwell time through the use 
of AVL–APC and fare box data, more detailed analysis is required 
to assess the accuracy of automatic data collection methods used 
to estimate dwell time and to explain the discrepancy the authors 
noticed between earlier models generated from manual counts and 
current ones generated from automatically collected data.

Methodology and Data Collection

The objective of this analysis is to assess how well data from AVL–
APC systems and fare boxes are able to measure passenger activity 
through the generation of dwell time models. Dwell time is defined 
as the time between doors opening and doors closing, including 
passenger activity time. Figure 1 represents the elements of dwell 
time that are captured through an automated or a manual system. An 
AVL system measures the time from door opening to door closing, 
while the APC system, which relies on two infrared beams in most 
cases, counts the number of passengers crossing these beams to 
identify the number of boardings and alightings during this period. 
However as shown in Figure 1, additional time with no passenger 
activity before the door closes may be captured in AVL–APC data, 
which might be generating an overestimate of the time required for 
passenger activity. This excess dwell time can be present for vari-
ous reasons: for example, bus holdings at time points or a red light 
in the case of a nearside bus stop. Such excess dwell time can be 
needed in some cases, while in other circumstances this time can be 
removed from the schedule to save passenger and operating time. 
This study was focused on estimating the extent to which this excess 
dwell time—time with no passenger activity—impacts the estimate 
of passenger activity in dwell time models. The authors therefore 
employed operations data collected through field measurement 
to model dwell time, from stop-level observations collected from  
two bus routes. This was done by observing the total dwell time, as 
well as the difference in time between the end of passenger activity 
and time until the door closed, which this study referred to as excess 
dwell time.

On the basis of previous research (3, 4, 23, 28), a typical dwell 
time model is defined as follows:

dwell time (s) = f (boardings, alightings, total passenger activity2, pas-
senger load, friction, direction, time of day, lift usage, stop location, 
weather condition, fare payment method).

Variables directly related to passenger activity include: total board-
ings and alightings, passenger load, a passenger friction factor, and 
passenger activity squared. Total boardings are the number of peo-
ple who boarded the bus, while passenger alightings are the number 
of people who exited the bus. The squared term of passenger activ-
ity is included to capture the potential nonlinear relationship of pas-
senger activity, suggesting that each additional passenger requires 
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less time to board than the passenger ahead (3, 4, 23). The passenger 
friction factor is used to capture the effect of an overcrowded bus 
with standees on dwell time and in this study was calculated as the 
sum of passenger activity and number of standees. Passenger load 
represents the number of passengers onboard the bus at the departure 
of the stop, where higher passenger loads are expected to increase 
dwell time (4).

The direction of the route and time of day are included in the model  
to estimate any associated differences in dwell time. Weather con-
dition, a variable outside the control of the transit agency, may affect 
dwell times as seen in previous studies (3) but was not included 
in this study’s models because of the lack of adverse or varying 
weather conditions during the data collection period. A dummy 
variable for lift operation, used to board passengers with a disabil-
ity, accounts for the additional dwell time at such stops (4). The 
bus lift was not used during the data collection period; however, 
the authors observed passengers boarding with an encumberment 
(such as a stroller, or large, heavy bags), as well as passengers with 
an observable disability or mobility limitation. Characteristics of 
each stop along the route were collected and tested in the authors’ 
models, such as stops occurring on the nearside or farside of an 
intersection, presence of a reserved bus lane, and bus shelters; few, 
however, were found significant and included in the final model. 
Finally, fare payment method was expected to affect dwell time, 
as previous research observed differences in passenger boarding 
times by different payment types (27).

The data for this study were collected from two bus routes in 
Montreal, Quebec, Canada, which are both operated by STM, the 
primary transit operator in Montreal. The two routes used for this 
study are 121 Sauvé and 69 Gouin (as shown in Figure 2). Both routes 
operate east–west and have similar operational characteristics, such 
as similar average stop spacing. Both routes operate in neighbor-
hoods with comparable built environments, share a connection with 
a metro station, and exclusively operate articulated buses. The daily 
weekday ridership of Route 121 is approximately 35,000 individu-
als, and approximately 27,000 individuals use Route 69 on week-
days. The main operational difference between these routes is that 
STM introduced a pilot all-door boarding policy along Route 121 
in March 2016, which will be accounted for in the authors’ models 
through a Route 121 dummy variable.

Manual observations of data were collected by three individuals 
who recorded important information related to passenger activity at 
each door, as well as the dwell time at each stop along both routes. 
For consistency, the same three people collected all the data. With 
regard to the dwell time recorded at each stop, the authors collected 
data on the time between door open and door close (total dwell time), 
the time of passenger activity (time after doors open to end of passen-
ger activity), and excess dwell time. The excess dwell time recorded 
represents the time spent at stops that was not the result of passenger 
activity (such as time points and driver changes). Additional data 
collected included number of passengers boarding and alighting at 
each door at each stop, arrival time at each stop, as well as observa-
tions related to passenger encumberment (such as a stroller or large, 
heavy bags), or a passenger with an observable disability or mobility 
restriction which may have extended the average time of passen-
ger activity. Finally, passenger load at every stop was calculated by 
counting the number of passengers on board at the beginning of the 
route and then adding and subtracting the boardings and alightings, 
respectively, throughout the route.

Characteristics of each stop along the route were also collected, 
such as stops occurring on the nearside or farside of an intersection, 
presence of a reserved bus lane, and bus shelters. Furthermore, the 
authors observed which payment type was used by each passenger 
boarding that involved a fare transaction with the driver (because 
passengers were allowed to board at the middle and rear doors on 
Route 121). There are three options of payment method, includ-
ing cash, a magnetic fare card, and a smart card. Furthermore, the 
authors recorded the number of passengers under the age of 6 years 
who boarded at the front door of the bus accompanied by an adult 
and were categorized as no-fare payment because such users ride 
transit free of charge. Payments by smart card on the STM bus 
network only require commuters to tap their passes upon boarding. 
A total of 1,036 stop observations were collected from 17 unique 
trips aboard Route 121 and, additionally, data from four unique 
trips were collected from Route 69. Data collection occurred 
between 6:30 a.m. and 6:30 p.m. on a Tuesday, a Wednesday, and 
a Thursday during the month of May 2016. The dates and times 
of data collection were chosen to collect an equal distribution of 
data between peak and off-peak hours. Throughout the data collec-
tion, weather conditions were normal (dry) and no events impeded 
ordinary operations of the bus route.

No fare presented (children)

Smart card

Magnetic

Cash

Encumbered passenger

No passenger
activity

Door ClosingDoor Opening

Passenger Alightings

Passenger Boardings

Passenger Activity Time

Dwell Time

Time

Excess Dwell
Time

FIGURE 1    Elements of dwell time.
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Results

Model 1 is a traditional dwell time model, which employs a linear 
regression method—where the times required for each passenger 
boarding and alighting are estimated—with a series of independent 
variables meant to capture variations in dwell time between stops  
and the two routes. This model represents typical information col-
lected by AVL–APC systems. In Model 2, the authors added the 
exact amount of excess dwell, which was noticed through the man-
ual observation to understand the bias imposed on each coefficient 
when such a variable is not included and only AVL–APC-like data 
are used. Model 3 includes a dummy variable for stops where the 
authors observed an encumbered passenger boarding. The model 
predicted the additional dwell time that can be expected to serve 
encumbered passengers, data currently not captured by AVL–APC 
data. Model 4 builds off the first three models by including detailed 
information on fare payment methods used by each front-door 
boarding. Models 5 and 6 expand on Model 4 similarly by adding 
the excess dwell variable and passenger encumberment variable to 
understand better the impacts of not including such information in a 
model derived from information from AVL–APC systems and fare 
box payments. A further description of variables included in such 
models is presented in Table 1. Layover stops (the first and final stops 
of each trip) are not included.

Dwell Time Model

Table 2 shows the estimates and 95% confidence intervals for Mod-
els 1 through 3. After first examining the traditional dwell time model 
(Model 1), the independent variables included in the model explain 

approximately 52% of the variation in dwell time. The constant 
variable (4.8 s) in this model represents a fixed amount of time that 
is associated with door openings and door closings. On average, each 
passenger boarding adds 4.3 s to the base dwell time while keeping 
all other variables at their mean values. Each passenger alighting 
adds 2.1 s to the total dwell time, keeping everything else constant. 
Similar to previous research, the authors noticed a diminishing impact 
of the squared term (passenger activity squared). This means that 
time used for every additional passenger movement is lower than 
the previous one. Furthermore, the positive coefficient of the pas-
senger friction factor shows the additional dwell time added on 
overcrowded buses with standees. These coefficients are consistent 
with findings from previous research (3, 4, 23).

In the expanded dwell time model (Model 2), which includes the 
amount of excess dwell time, the model variables explain approxi-
mately 95% of the variation in dwell time. The excess dwell time vari-
able controls for the amount of additional dwell time that occurred 
after the end of passenger activity. The constant variable reports 3.3 s 
compared to 4.8 s in the first model, while each passenger board-
ing on average adds 1.8 s to the total dwell time keeping all other 
variables at their mean values. While each passenger alighting adds 
0.8 s to the constant dwell time of 3.3 s. The estimated time of the 
first passenger boarding in this model is approximately 2.4 times less 
than the traditional model. Similar to Model 1 and previous research, 
additional passengers use less time, as noticed from the passenger 
activity square coefficient. On average, excess dwell time adds an 
additional 1 s to the total dwell time, indicating an overestimation of 
time required for passenger activity.

Model 3 shows the variation in dwell time associated with an 
encumbered passenger boarding. The model variables explain 

(a)

(b)

FIGURE 2    Context map of routes studied and relevant route characteristics: (a) Route 121 Sauvé and (b) Route 69 Gouin. (Data source: STM 
and DMTI; projection source: North American Datum 1983 Modified Transverse Mercator 8.)
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TABLE 1    Descriptive Statistics

Variable Description Mean SD Count

Total boardings Total number of passengers who boarded at all doors at a single bus stop during a trip 1.95 4.64 NA

Smart card Number of passengers who paid with a smart card 1.54 2.74 1,456

Magnetic card Number of passengers who paid with a magnetic pass 0.03 0.27 28

Cash Number of passengers who paid with cash 0.05 0.24 48

No fare presented Number of passengers who boarded bus without presenting fare 0.05 0.28 44

Total rear-door boardings Total number of passengers who boarded bus at either the middle doors or the rear doors at 
a single bus stop during a trip

0.46 2.71 NA 

Total alightings Total number of passengers who alighted at all doors at a single bus stop during a trip 2.23 5.41 NA

Total passenger activity2 Square of total number of passenger boardings and alightings at all doors at a stop during 
a trip

105.02 676.02 NA 

Excess dwell Additional dwell time after end of passenger activity (s) 6.17 25.76 NA

Route 121 Dummy variable equal to 1 if stop occurred on Route 121 0.77 0.42 NA

Friction Total number of standees plus sum of total boarding and alightings at a stop 4.67 9.74 NA

a.m. Dummy variable equal to 1 if trip took place between 6:30 and 9:30 a.m. 0.34 0.48 NA

p.m. Dummy variable equal to 1 if trip took place between 3:30 and 6:30 p.m. 0.24 0.43 NA

Midday Dummy variable equal to 1 if trip took place between 9:30 a.m. and 3:30 p.m. 0.42 0.49 NA

Passenger load Total number of passengers on a bus at departure of a stop 27.21 15.96 NA

Eastbound trip Dummy variable equal to 1 if stop occurred on an eastbound trip 0.49 0.50 NA

Metro station Dummy variable equal to 1 if stop occurred at a metro station 0.05 0.21 NA

Encumbered passenger Dummy variable equal to 1 if a passenger with an encumberment, disability, or mobility 
limitation boarded or alighted from bus

0.03 0.18 NA 

Signalized intersection Dummy variable equal to 1 if stop occurred at a signalized intersection 0.66 0.47 NA

Note: NA = not available.

TABLE 2    Dwell Time Models

Traditional Dwell Time (Model 1)a Expanded Model (Model 2)b Expanded Model (Model 3)c

95% Confidence 
Interval 

95% Confidence 
Interval

95% Confidence 
Interval

Variable Coefficient
Lower 
Bound

Upper 
Bound Coefficient

Lower 
Bound

Upper 
Bound Coefficient

Lower 
Bound

Upper 
Bound

Constant 4.82** 0.84 0.98 3.33*** 2.09 4.57 3.26*** 2.05 4.46

Total boardings 4.33*** 3.73 8.81 1.84*** 1.65 2.03 1.74*** 1.55 1.93

Total alightings 2.14*** 1.47 4.93 0.78*** 0.57 0.99 0.76*** 0.56 0.97

Total passenger activity2 −0.011*** −0.02 2.82 −0.010*** −0.01 −0.01 −0.0096*** −0.01 −0.01

Excess dwell NA NA NA 0.96*** 0.94 0.98 0.96*** 0.94 0.98

Friction −0.66** −1.19 −0.14 0.32*** 0.16 0.49 0.32*** 0.16 0.48

Eastbound trip −1.19 −3.96 1.58 −0.76** −1.62 0.10 −0.83** −1.67 0.00

a.m.d −4.55*** −7.81 −1.29 −0.70 −1.72 0.31 −0.76* −1.74 0.23

p.m.d −0.49 −4.19 3.20 0.17 −0.98 1.32 0.14 −0.97 1.25

Metro station 26.54*** 18.46 34.62 −3.82*** −6.41 −1.23 −3.23** −5.74 −0.71

Encumbered passenger NA NA NA NA NA NA 9.19*** 6.84 11.54

Signalized intersection 5.52*** 2.50 8.54 1.67*** 0.72 2.61 1.42*** 0.51 2.34

Route 121 −1.43 −4.96 2.10 0.45 −0.65 1.54 0.65 −0.42 1.71

aR2 = .52.
bR2 = .95.
cR2 = .96.
dReference category is midday.
*p < .1; **p < .05; ***p < .01.
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approximately 96% of the variation in dwell time. Models 2 and 3 
show that the addition of excess dwell time and encumbered passen-
ger boarding variables to Model 1 result in a significant increase in 
the model fitting, from 0.52 to 0.95 and 0.96, respectively. This indi-
cates the importance of these two variables for estimating the varia-
tion in dwell time. The model indicates that dwell time is expected 
to increase by 9.2 s for an encumbered passenger boarding or alight-
ing the bus, while keeping all other variables constant at their mean 
values. The constant variable and estimate of passenger alighting are 
consistent with those of Model 2, while each passenger boarding on 
average adds 1.7 s compared to 1.8 s in Model 2, when all variables 
are controlled for. Remaining variables related to passenger activity 
behave consistently with those of Models 1 and 2.

For the remaining control variables in Models 1 through 3, dwell 
times at signalized intersections are slower compared to midblock 
stops or nonsignalized stops, which is consistent with previous 
studies (23). Dwells taking place at a bus stop with a connection to 
the metro are generally faster compared to a non-metro stop. Also, 
trips during the a.m. peak period are estimated to have faster dwell 
times than those of midday trips, this can be attributed to a greater 
proportion of regular riders who may board by using passes and 
ask fewer questions (4). Lastly, dwell times of eastbound bus stops 
were on average 1 s faster compared to westbound trips. The vari-
able controlling for dwell time variation between Routes 121 and 
69 did not show a statistically significant effect on dwell time in the 
sample, although Route 121 allowed all door boardings.

Dwell Time Model with Fare Payment Type

Table 3 shows the estimates and 95% confidence intervals of Mod-
els 4 through 6 which estimate the variation in dwell time by each 
fare payment type, while otherwise keeping the models consistent 
with the previous dwell time model. After first examining the dwell 
time model with fare payment type (Model 4), the independent 
variables included in the model explain approximately 54%t of the 
variation in dwell time. The constant variable in this model reports 
3.3 s that is associated with door opening and door closing times for 
each dwell, keeping all other variables at their mean values. Consis-
tent with previous studies, certain fare types have larger impacts on 
dwell time (27). Each passenger boarding with a smart card added 
4.7 s, while each passenger boarding with a magnetic card added 
21.8 s, on average, to the dwell time while keeping everything else 
constant. A magnetic card must be validated upon boarding, and  
the long boarding time associated with this payment type is largely 
associated with observed difficulties or confusion of passengers with 
the correct method to insert and validate the magnetic strip card. 
Boarding time associated with passengers categorized as no-fare 
payment (young children) increased dwell time by 4.2 s, on average. 
Finally, each passenger who paid with cash to the driver added 8.7 s 
to the dwell time. Because Route 121 allowed all-door boarding, 
passengers who boarded at the second and third doors increased the 
dwell time by 1.5 s. Consistent with Models 1 through 3, the time 
required for each additional boarding was lower than the time of the 

TABLE 3    Dwell Time Models with Fare Payment Types

Traditional Fare Payment (Model 4)a Expanded Fare Payment (Model 5)b Expanded Fare Payment (Model 6)b

95% Confidence 
Interval

95% Confidence 
Interval

95% Confidence 
Interval

Variable Coefficient
Lower 
Bound

Upper 
Bound Coefficient

Lower 
Bound

Upper 
Bound Coefficient

Lower 
Bound

Upper 
Bound

Constant 3.30* −0.62 7.21 2.53*** 1.41 3.66 2.50*** 1.40 3.60

Fare Payment Type

Smart card 4.71*** 3.96 5.46 2.50*** 2.28 2.71 2.42*** 2.20 2.64

Magnetic card 21.77*** 16.23 27.31 0.42 −1.23 2.06 0.19 −1.42 1.79

No fare presented 4.23* −0.83 9.28 4.17*** 2.72 5.62 2.50*** 1.00 4.01

Cash 8.66*** 2.56 14.76 7.07*** 5.32 8.82 6.93*** 5.22 8.65

Total alightings 1.73*** 1.05 2.40 0.64*** 0.45 0.84 0.64*** 0.45 0.83

Total rear-door boardings 1.48** 0.30 2.67 0.03 −0.31 0.37 0.054 −0.28 0.39

Total passenger activity2 −0.0047** −0.01 0.00 −0.0047*** −0.01 0.00 −0.0047*** −0.01 0.00

Friction −0.51** −1.03 0.01 0.27*** 0.12 0.42 0.28*** 0.13 0.42

Eastbound trip −0.87 −3.58 1.83 −0.79** −1.57 −0.02 −0.84** −1.60 −0.08

a.m.c −3.49** −6.69 −0.30 −0.66 −1.57 0.26 −0.70 −1.60 0.20

p.m.c 0.21 −3.41 3.83 0.51 −0.53 1.55 0.53 −0.49 1.54

Metro station 27.55*** 19.53 35.57 −1.12 −3.49 1.25 −0.74 −3.06 1.58

Encumbered passenger NA NA NA NA NA NA 7.58*** 5.32 9.85

Signalized intersection 5.48*** 2.53 8.43 1.46*** 0.61 2.31 1.29*** 0.46 2.12

Route 121 −1.04 −4.50 2.41 0.60 −0.39 1.60 0.70 −0.27 1.67

Excess dwell NA NA NA 0.97*** 0.95 0.99 0.97*** 0.95 0.99

aR2 = .54.
bR2 = .96.
cReference category is midday.
*p < .1; **p < .05; ***p < .01.
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previous boarding. Furthermore, additional dwell time is expected 
on heavily loaded buses.

In the expanded fare-payment model (Model 5), which includes 
the amount of excess dwell, the model variables explain approxi-
mately 96% of variation in dwell time. The constant variable reports 
2.5 s, which is lower than the estimated constant of 3.3 s in Model 4. 
Rear-door boardings in this model revealed no statistically signifi-
cant effect on dwell time as such boarding happens simultaneously 
with front-door boardings, which requires interaction with the fare 
box. Similar to the previous expanded model (Model 2), significant 
reductions in the estimates of each fare method were observed when 
the excess dwell variable was included. Each passenger boarding 
with a smart card added 2.5 s, compared to 4.7 s in Model 4. The 
time required for passengers who boarded by using a magnetic card 
was not statistically significant in the expanded model. This may be 
attributed to the small number of passengers boarding with a mag-
netic card (1.8% of observed boardings), and likely the inconsistent 
time associated with this method. The authors were therefore unable 
to attain a statistically significant estimate of the average board-
ing time associated with magnetic card payments. Young children 
boarding with an adult added, on average, 4.2 s to the dwell time. 
Lastly, individuals who paid cash added 7.1 s to the total dwell time, 
which is 18% lower than the estimated time of 8.7 s in Model 4. 
Similar to other studies, cash transactions add more dwell time than 
do electronic payment methods (27). On average, excess dwell time 
adds an additional 1 s to the total dwell time, which is consistent 
with that of Models 2 and 3.

Model 6 shows the expanded fare payment model, including a 
variable for an encumbered passenger boarding. The variables in 
this model are consistent with those of Model 5, as well as the time 
reported for passengers boarding with a smart card and cash. How-
ever, in this model, the dwell time added for a passenger boarding is 
2.4 s compared to 2.5 s in Model 5 and 4.2 s in Model 4. The lower 
time estimate for boardings observed in Model 6 can be explained 
by the addition of the encumbered passenger variable, which would 
account for the additional time required to board a young child in a 
stroller. The model indicates that dwell time is expected to increase 
by 7.6 s for an encumbered passenger boarding or alighting from 
the bus, while keeping all other variables constant at their mean val-
ues. Consistent with Model 5 and the expanded dwell time models, 
excess dwell time adds an additional 1 s, on average, to the total 
dwell time, while keeping all other variables at their mean values.

In regard to the remaining control variables in Models 4 through 6, 
the coefficients generally follow the same sign and statistical signif-
icance and have a similar magnitude as those of Models 1 through 3, 
with the exception of the lack of statistical significance associated 
with dwells occurring at a bus stop with a connection to the metro. 
This observation requires further research in the future.

Discussion of Results

Reducing dwell time at bus stops is expected to decrease overall 
running time and can improve reliability and speed (20). Dwell time 
can make up to 25% of the total running time of a bus (1). Passenger 
activity is a major component of dwell time; however, without care-
ful knowledge of average time needed to serve passengers, transit 
agencies may be overestimating the scheduled running time. The 
purpose of this study was to estimate how accurately AVL–APC and 
fare box data are capturing the time associated with passenger activ-
ity from stop-level observations of dwell time. A series of dwell time 

models were estimated from manually collected stop-level observa-
tion data to compare estimates from detailed dwell time models to 
models using data similar to what is reported by AVL–APC systems 
and fare boxes. While each of the models revealed coefficients and 
statistical significance of key variables expected to affect dwell 
time, the traditional model using data similar to that reported by 
AVL–APC systems overestimated the time of the first passenger 
boarding by approximately 2.5 times. The dwell time estimates of 
the traditional model are comparable to estimated boarding times in 
previous studies using AVL–APC data (3, 4, 23). This overestima-
tion of time required for passenger activity was a result of excess 
dwell time likely captured by AVL–APC data. After accounting for 
excess dwell time, the estimated passenger activity time resembles 
Levinson’s 1983 estimate of dwell time by using manually collected 
data (1). This excess dwell time occurs after passenger activity has 
commenced before the door closes. The manual data collection pro-
cess employed in this study allowed the authors to capture details 
regarding the dynamics of passenger activity, details that are not 
currently well captured by AVL–APC and fare box data.

Identifying and reducing this bias imposed by AVL–APC data is 
critical for the improvement of automatic data collection methods. 
Schedulers use estimates from dwell time models to build route 
schedules. Accordingly, lack of knowledge about excess dwell time 
can result in an overestimation of the designated operational hours 
of a bus route. At the system level, such a number is expected to  
vary between different routes as a result of variation in the num-
ber of passenger activities, yet it will contribute a significant over
estimation of operating costs that can be translated to thousands 
of dollars per day. The authors also added a variable for passen-
ger movements involving encumbered passengers, allowing for a 
more detailed and accurate dwell time model. Passengers boarding 
with various encumberments, mobility restrictions, or strollers are 
examples of the dynamics of passenger activity which AVL–APC 
data fail to capture.

Fare payment methods have a substantial effect on dwell time. 
Comparing dwell time estimates of fare box data to stop-level obser-
vations of dwell time revealed an overestimation of the effect of each 
payment type on total dwell. When controlling for excess dwell, 
smart card payments had the least effect on dwell time, while cash 
transactions were associated with the highest additional dwell time. 
To reduce dwell time associated with passenger boarding, alternative 
fare collection methods are recommended, such as off-board payment 
methods or eliminating cash transactions. This model adds to the lit-
erature, because in previous studies disaggregate data regarding pas-
senger boardings by fare type were not available (6, 24). Therefore, at 
this time, studies using manually collected passenger activity, similar 
to Fletcher and El-Geneidy (27), are vital to the understanding of 
dwell time associated with fare payment methods.

Conclusion and Recommendations

The results indicate that without adjustments to the automatic data 
collection of dwell time and passenger activity, transit agencies are 
not capturing the full benefit of policies which aim to reduce the 
running time of bus routes. Estimates of boarding times derived 
from AVL–APC and fare box data can be misleading and can add 
a substantial amount of operating time to the schedules, leading to 
additional running time and causing delays for onboard passengers. 
To address this issue, improvements to AVL–APC data collection 
are recommended to capture excess dwell time. The time stamp of 
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each passenger boarding can be collected and recorded by the APC 
system, especially for the last boarding passenger, and can be used to 
identify the end of passenger activity. When combined with the door 
closing time, this information can enable transit agencies to iden-
tify the amount of excess dwell at every stop and adjust schedules 
accordingly. Some excess dwell time does need to be added to sched-
ules intentionally to work as a cushion for route interruptions and 
delays, yet such an amount should be carefully calculated after fully 
understanding the dynamics of the dwell time along a route through 
detailed analysis, similar to the dwell time analysis conducted in 
this study. Furthermore, addressing the bias in dwell time resulting 
from encumbered passengers is also recommended. For example, an 
operator-facilitated button to record passenger activity involving a 
rider with a physical disability or various encumberments that does 
not require the use of the lift would increase the accuracy of dwell 
time estimates derived from AVL–APC and fare box data. Knowl-
edge of the composition of patronage along a bus route, such as a 
route serving a high proportion of elderly passengers, can inform 
schedulers with the required modifications to the schedule.

Researchers argue that growth in public transport patronage can 
result from service reliability improvements, while growth can 
decrease because of unreliable service (13, 14). While AVL–APC 
and fare box systems provide transit agencies with a rich database for 
analysis for operational improvements, minor adjustments to such 
systems that can help in capturing excess dwell time are warranted to 
provide a more accurate picture of what is happening on the ground. 
Future research using manually collected data will remain a key 
resource for planners and researchers to enable advancements in the 
technology of automatically collected data for improved utilization.

Acknowledgments

The authors thank Dea van Lierop and Geneviève Boisjoly of the 
Transportation Research at McGill group for their efforts in data 
collection. This work was supported by research grants from the 
Natural Sciences and Engineering Research Council of Canada and 
the Social Sciences and Humanities Research Council.

References

  1.	 Levinson, H. S. Analyzing Transit Travel Time Performance. Transpor-
tation Research Record, No. 915, 1983, pp. 1–6.

  2.	 Fernández, R., P. Zegers, G. Weber, and N. Tyler. Influence of Plat-
form Height, Door Width, and Fare Collection on Bus Dwell Time: 
Laboratory Evidence for Santiago de Chile. Transportation Research 
Record: Journal of the Transportation Research Board, No. 2143, 2010, 
pp. 59–66. https://dx.doi.org/10.3141/2143-08.

  3.	 El-Geneidy, A., and N. Vijayakumar. The Effects of Articulated Buses 
on Dwell and Running Times. Journal of Public Transportation, Vol. 14, 
No. 3, 2011, p. 63–86. https://doi.org/10.5038/2375-0901.14.3.4.

  4.	 Dueker, K. J., T. J. Kimpel, J. G. Strathman, and S. Callas. Determinants 
of Bus Dwell Time. Journal of Public Transportation, Vol. 7, No. 1, 
2004, p. 21–40. https://doi.org/10.5038/2375-0901.7.1.2.

  5.	 Kathuria, A., M. Parida, C. R. Sekhar, and M. Pathak. Examining Bus 
Lost Time Dynamics for a Bus Rapid Transit Station. Journal of Pub-
lic Transportation, Vol. 19, No. 2, 2016, p. 168–182. https://doi.org 
/10.5038/2375-0901.19.2.10.

  6.	 Sun, L., A. Tirachini, K. Axhausen, A. Erath, and D. Lee. Models of 
bus boarding and alighting dynamics. Transportation Research Part A: 
Policy and Practice, Vol. 69, 2014, pp. 447–460. https://doi.org/10.1016 
/j.tra.2014.09.007.

  7.	 Strathman, J., K. Dueker, T. Kimpel, R. Gerhart, K. Turner, P. Taylor,  
S. Callas, D. Griffin, and J. Hopper. Automated Bus Dispatching, Opera-
tions Control and Service Reliability: Baseline Analysis. Transportation 

Research Record: Journal of the Transportation Research Board, 
No. 1666, 1999, pp. 28–36. https://dx.doi.org/10.3141/1666-04.

  8.	 Bertini, R., and A. El-Geneidy. Modeling Transit Trip Time Using 
Archived Bus Dispatch System Data. Journal of Transportation Engi-
neering, Vol. 130, No. 1, 2004, pp. 56–67. https://doi.org/10.1061 
/(ASCE)0733-947X(2004)130:1(56).

  9.	 ITS Society of Canada. ITS in Society—An Integration of Technologies. 
https://www.itscanada.ca/it/society/index.html.

10.	 Furth, P., T. Muller, J. Strathman, and B. Hemily. Designing Automated 
Vehicle Location Systems for Archived Data Analysis. Transporta-
tion Research Record: Journal of the Transportation Research Board, 
No. 1887, 2004, pp. 62–70. http://dx.doi.org/10.3141/1887-08.

11.	 El-Geneidy, A., J. Strathman, T. Kimpel, and D. Crout. Effects of Bus 
Stop Consolidation on Passenger Activity and Transit Operations. Trans-
portation Research Record: Journal of the Transportation Research 
Board, No. 1971, 2006, pp. 32–41. https://dx.doi.org/10.3141/1971-06.

12.	 Diab, E., M. Badami, and A. El-Geneidy. Bus Transit Service Reliabil-
ity and Improvement Strategies: Integrating the Perspectives of Pas-
sengers and Transit Agencies in North America. Transport Reviews, 
Vol. 35, No. 3, 2015, pp. 292–328. https://doi.org/10.1080/01441647 
.2015.1005034.

13.	 Bates, J., J. Polak, P. Jones, and A. Cook. The Valuation of Reliabil-
ity for Personal Travel. Transportation Research Part E: Logistics and 
Transportation Review, Vol. 37, No. 2–3, 2001, pp. 191–229. https://doi 
.org/10.1016/S1366-5545(00)00011-9.

14.	 Noland, R., and J. Polak. Travel Time Variability: A Review of Theo-
retical and Empirical Issues. Transport Reviews, Vol. 22, No. 1, 2002, 
pp. 39–54. https://doi.org/10.1080/01441640010022456.

15.	 Hensher, D., P. Stopher, and P. Bullock. Service Quality—Developing 
a Service Quality Index in the Provision of Commercial Bus Contracts. 
Transportation Research Part A: Policy and Practice, Vol. 37, No. 6, 
2003, pp. 499–517. https://doi.org/10.1016/S0965-8564(02)00075-7.

16.	 Special Report 209: Highway Capacity Manual. TRB, National Research 
Council, Washington, D.C., 1985.

17.	 Chien, S., S. Chowdhury, K. Mouskos, and Y. Ding. Enhancements of 
CORSIM Model in Simulating Transit Operations. Journal of Trans-
portation Engineering, Vol. 126, No. 5, 2000, pp. 396–404. https://doi 
.org/10.1061/(ASCE)0733-947X(2000)126:5(396).

18.	 Transit Capacity. In Special Report 209: Highway Capacity Manual, 
3rd ed. (1997 update). TRB, National Research Council, Washington, 
D.C., 1998.

19.	 Guenthner, R. P., and K. C. Sinha. Modeling Bus Delays Due to Pas-
senger Boardings and Alightings. Transportation Research Record, 
No. 915, 1983, pp. 7–13.

20.	 Levine, J., and G. Torng. Dwell-Time Effects of Low-Floor Bus Design. 
Journal of Transportation Engineering, Vol. 120, No. 6, 1994, pp. 914–929. 
https://doi.org/10.1061/(ASCE)0733-947X(1994)120:6(914).

21.	 Lin, T., and N. Wilson. Dwell Time Relationships for Light Rail Sys-
tems. Transportation Research Record, No. 1361, 1992, pp. 287–295.

22.	 Zografos, K., and H. Levinson. Passenger Service Times for a No-Fare 
Bus System. Transportation Research Record, No. 1051, 1986, pp. 42–48.

23.	 Diab, E., and A. El-Geneidy. The Far Side Story: Measuring the Benefits 
of Bus Stop Location on Transit Performance. Transportation Research 
Record: Journal of the Transportation Research Board, No. 2538, 2015, 
pp. 1–10. https://dx.doi.org/10.3141/2538-01.

24.	 Tirachini, A. Estimation of Travel Time and the Benefits of Upgrading 
the Fare Payment Technology in Urban Bus Services. Transportation 
Research Part C: Emerging Technologies, Vol. 30, 2013, pp. 239–256. 
https://doi.org/10.1016/j.trc.2011.11.007.

25.	 Milkovits, M. Modeling the Factors Affecting Bus Stop Dwell Time: Use  
of Automatic Passenger Counting, Automatic Fare Counting, and Auto-
matic Vehicle Location Data. Transportation Research Record: Journal 
of the Transportation Research Board, No. 2072, 2008, pp. 125–130. 
https://dx.doi.org/10.3141/2072-13.

26.	 Jara-Diaz, S., and A. Tirachini. Urban Bus Transport: Open All Doors 
for Boarding. Journal of Transport Economics and Policy, Vol. 47, No. 1, 
2013, p. 91–106.

27.	 Fletcher, G., and A. El-Geneidy. Effects of Fare Payment Types and 
Crowding on Dwell Time: Fine-Grained Analysis. Transportation 
Research Record: Journal of the Transportation Research Board, 
No. 2351, 2013, pp. 124–132. https://dx.doi.org/10.3141/2351-14.

28.	 Tirachini, A. Bus Dwell Time: The Effect of Different Fare Collection 
Systems, Bus Floor Level and Age of Passengers. Transportmetrica A: 
Transportation Science, Vol. 9, No. 1, 2013, pp. 28–49.

The Standing Committee on Bus Transit Systems peer-reviewed this paper.


